Dual parameterization of sparse variational Gaussian processes

Date December 6, 2021
Authors Vincent Adam, Paul Chang, Mohammad Emtiyaz E Khan, Arno Solin

Sparse variational Gaussian process (SVGP) methods are a common choice for non-conjugate Gaussian process inference because of their computational benefits. In this paper, we improve their computational efficiency by using a dual parameterization where each data example is assigned dual parameters, similarly to site parameters used in expectation propagation.

Our dual parameterization speeds-up inference using natural gradient descent, and provides a tighter evidence lower bound for hyperparameter learning. The approach has the same memory cost as the current SVGP methods, but it is faster and more accurate.

View paper

Share
,,
Solutions
    Learn more
Labs
Insights
Company
Careers
©2022 Secondmind Ltd.
English
|日本語|